Copied to
clipboard

G = C12.76C24order 192 = 26·3

23rd non-split extension by C12 of C24 acting via C24/C23=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.76C24, C4oD4.61D6, (C6xD4).13C4, C3:C8.34C23, (C6xQ8).13C4, D4.Dic3:9C2, C3:3(Q8oM4(2)), C6.49(C23xC4), C4.75(S3xC23), C4oD4.5Dic3, D4.9(C2xDic3), C12.98(C22xC4), (C2xQ8).11Dic3, Q8.15(C2xDic3), (C2xD4).10Dic3, (C22xC4).296D6, (C2xC12).554C23, C4.Dic3:35C22, C2.11(C23xDic3), C23.16(C2xDic3), C4.20(C22xDic3), C22.2(C22xDic3), (C22xC12).289C22, (C2xC3:C8):21C22, (C3xC4oD4).4C4, (C2xC4oD4).15S3, (C6xC4oD4).10C2, (C3xD4).26(C2xC4), (C3xQ8).28(C2xC4), (C2xC12).136(C2xC4), (C2xC4.Dic3):29C2, (C22xC6).81(C2xC4), (C2xC6).29(C22xC4), (C2xC4).31(C2xDic3), (C2xC4).635(C22xS3), (C3xC4oD4).49C22, SmallGroup(192,1378)

Series: Derived Chief Lower central Upper central

C1C6 — C12.76C24
C1C3C6C12C3:C8C2xC3:C8D4.Dic3 — C12.76C24
C3C6 — C12.76C24
C1C4C2xC4oD4

Generators and relations for C12.76C24
 G = < a,b,c,d,e | a12=c2=d2=e2=1, b2=a9, bab-1=a5, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe=a6b, dcd=a6c, ce=ec, de=ed >

Subgroups: 392 in 258 conjugacy classes, 187 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C23, C12, C12, C2xC6, C2xC6, C2xC6, C2xC8, M4(2), C22xC4, C2xD4, C2xQ8, C4oD4, C3:C8, C2xC12, C2xC12, C3xD4, C3xQ8, C22xC6, C2xM4(2), C8oD4, C2xC4oD4, C2xC3:C8, C4.Dic3, C22xC12, C6xD4, C6xQ8, C3xC4oD4, Q8oM4(2), C2xC4.Dic3, D4.Dic3, C6xC4oD4, C12.76C24
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, Dic3, D6, C22xC4, C24, C2xDic3, C22xS3, C23xC4, C22xDic3, S3xC23, Q8oM4(2), C23xDic3, C12.76C24

Smallest permutation representation of C12.76C24
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 28 10 25 7 34 4 31)(2 33 11 30 8 27 5 36)(3 26 12 35 9 32 6 29)(13 46 22 43 19 40 16 37)(14 39 23 48 20 45 17 42)(15 44 24 41 21 38 18 47)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(31 37)(32 38)(33 39)(34 40)(35 41)(36 42)
(1 22)(2 23)(3 24)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)(10 19)(11 20)(12 21)(25 40)(26 41)(27 42)(28 43)(29 44)(30 45)(31 46)(32 47)(33 48)(34 37)(35 38)(36 39)
(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,28,10,25,7,34,4,31)(2,33,11,30,8,27,5,36)(3,26,12,35,9,32,6,29)(13,46,22,43,19,40,16,37)(14,39,23,48,20,45,17,42)(15,44,24,41,21,38,18,47), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42), (1,22)(2,23)(3,24)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(12,21)(25,40)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,37)(35,38)(36,39), (25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,28,10,25,7,34,4,31)(2,33,11,30,8,27,5,36)(3,26,12,35,9,32,6,29)(13,46,22,43,19,40,16,37)(14,39,23,48,20,45,17,42)(15,44,24,41,21,38,18,47), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42), (1,22)(2,23)(3,24)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(12,21)(25,40)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,37)(35,38)(36,39), (25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,28,10,25,7,34,4,31),(2,33,11,30,8,27,5,36),(3,26,12,35,9,32,6,29),(13,46,22,43,19,40,16,37),(14,39,23,48,20,45,17,42),(15,44,24,41,21,38,18,47)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(31,37),(32,38),(33,39),(34,40),(35,41),(36,42)], [(1,22),(2,23),(3,24),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18),(10,19),(11,20),(12,21),(25,40),(26,41),(27,42),(28,43),(29,44),(30,45),(31,46),(32,47),(33,48),(34,37),(35,38),(36,39)], [(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)]])

54 conjugacy classes

class 1 2A2B···2H 3 4A4B4C···4I6A6B6C6D···6I8A···8P12A12B12C12D12E···12J
order122···23444···46666···68···81212121212···12
size112···22112···22224···46···622224···4

54 irreducible representations

dim111111122222244
type++++++---+
imageC1C2C2C2C4C4C4S3D6Dic3Dic3Dic3D6Q8oM4(2)C12.76C24
kernelC12.76C24C2xC4.Dic3D4.Dic3C6xC4oD4C6xD4C6xQ8C3xC4oD4C2xC4oD4C22xC4C2xD4C2xQ8C4oD4C4oD4C3C1
# reps168162813314424

Matrix representation of C12.76C24 in GL4(F73) generated by

24000
02400
0030
0003
,
0010
0001
46000
04600
,
464300
342700
004643
003427
,
72000
31100
00720
00311
,
1000
0100
00720
00072
G:=sub<GL(4,GF(73))| [24,0,0,0,0,24,0,0,0,0,3,0,0,0,0,3],[0,0,46,0,0,0,0,46,1,0,0,0,0,1,0,0],[46,34,0,0,43,27,0,0,0,0,46,34,0,0,43,27],[72,31,0,0,0,1,0,0,0,0,72,31,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,72,0,0,0,0,72] >;

C12.76C24 in GAP, Magma, Sage, TeX

C_{12}._{76}C_2^4
% in TeX

G:=Group("C12.76C2^4");
// GroupNames label

G:=SmallGroup(192,1378);
// by ID

G=gap.SmallGroup(192,1378);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,387,1123,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^12=c^2=d^2=e^2=1,b^2=a^9,b*a*b^-1=a^5,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e=a^6*b,d*c*d=a^6*c,c*e=e*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<